TEORIAS E FILOSOFIAS DE GRACELI 289

 


sábado, 23 de novembro de 2019

Em física atômica, a estrutura fina da raia espectral de um átomo corresponde ao seu desdobramento (separação) em outras linhas de frequências próximas, detectáveis através de um espectroscópio de boa resolução.
Esta estrutura pode ser explicada através da física quântica; devido a quebra parcial da degenerecência de um nível de energia do modelo de Bohr em resultado a três tipos de correções:
A descoberta da estrutura fina do átomo de hidrogênio concedeu o Nobel de Física à Willis Eugene Lamb em 1955.
Estruturas de nível fino podem ser desdobradas também devido a interação com o momento magnético do núcleo (estrutura hiperfina).

    Correção relativística escalar[editar | editar código-fonte]

    Classicamente, o termo da energia cinética é:
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Entretanto, quando consideramos a relatividade especial, devemos utilizar a forma relativística da energia cinética,
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde o primeiro termo é a energia relativística total, e o segundo termo a energia de repouso do elétron. Expandindo a expressão encontramos:
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Então, a correção de primeira ordem ao Hamiltoniano é
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Utilizando isso como uma perturbação, podemos calcular as correções de energia de primeira ordem devido aos efeitos relativísticos.
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde  é a função de onda não perturbada. Retornando ao Hamiltoniano não perturbado, vemos que
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Podemos utilizar esse resultado para calcular também a correção relativística:
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Para o átomo de hidrogênio, , and  
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde  é o raio de Bohr é o número quântico principal e  é o número quântico azimutal. Assim, a correção para o átomo de hidrogênio é
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    A interação de spin-Órbita (Mecânica Quântica)[editar | editar código-fonte]

    Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[1]
    Assim, a função de onda total é escrita como uma função de produto.
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

     (P)
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    A suposição feita acima implica que não existe interação entre L e S, i.e 
    Neste caso,  é uma auto-função de ambos  e  e portanto  e  são bons números quânticos; em outras palavras, as projeções de  e  são constantes do movimento.
    Mas na verdade existe uma interação entre  e  chamada interação Spin-Órbita expressa em termos da grandeza .
    Dado que  não comuta quer com  ou com , a equação (P) torna-se incorreta e  e  deixam de ser bons números quânticos. 
    Nós imaginamos a interação spin-órbita como o momento magnético spin estacionária interagindo com o campo magnético produzido pelo núcleo orbitante.
    No sistema de referência de repouso do electrão, há um campo eléctrico
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Onde  dirige‐se do núcleo em direção ao electrão. 
    Assumindo que  é a velocidade do electrão no sistema de referência de repouso do núcleo, a corrente produzida pelo movimento nuclear é: 
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    No sistema de referência de repouso do electrão.
    Portanto
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    O momento de spin do electrão realiza um movimento precessional neste campo com frequência de Larmor:
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Com energia potencial
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    As equações acima são válidas no quadro de referência de repouso electrão.
    A Transformação para o sistema de referência de repouso do núcleo introduz um fator de ½ - chamado o fator de Thomas. [Isto pode ser mostrado, calculando o tempo dilatado entre os dois sistemas de referência em repouso].[1]
    Portanto, um observador no sistema de referência de repouso do núcleo poderia observar o electrão a realizar um movimento de precessão com uma velocidade angular de
     (T)
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    e por uma energia adicional dada por
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    As duas Eqs acima podem ser colocadas em uma forma mais geral, restringindo o V ser qualquer potencial central com simetria esférica.
    De forma que
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    e então
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    A equação (T) torna-se então
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    E a energia adicional
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    O produto escalar
    Para spin = ½
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    A separação energética se torna então
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Para o potencial de Coulomb a separação energética pode ser aproximada por:

    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Onde  é o comprimento de onda de Compton
     ou 
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Um resultado útil no cálculo é citado sem prova. O valor médio de  i.e.
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    para 
    De modo que a separação energética se torna

    para 
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D



    Constante de estrutura fina é a constante física que caracteriza a magnitude da força eletromagnética. Pode ser definida como
    .
    x

    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Nessa definição,  é a carga do elétron a constante de Planck a velocidade da luz no vácuo e  a permissividade do vácuo.
    A constante de estrutura fina é adimensional, ou seja, seu valor não depende do sistema de unidades de medida usado. Segundo o CODATA, a constante vale:
     .
    Arnold Sommerfeld introduziu esta constante em 1916.

    quinta-feira, 28 de novembro de 2019



    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D





    A dispersão da luz por partículas é o processo pelo qual pequenas partículas (por exemplo cristais de gelo , poeira , partículas atmosféricas poeira cósmica e células sanguíneas ) causam fenômenos ópticos , como arco-íris , cor azul do céu e halos .
    As equações de Maxwell são a base dos métodos teóricos e computacionais que descrevem a dispersão da luz , mas como as soluções exatas das equações de Maxwell são conhecidas apenas para geometrias selecionadas (como partículas esféricas), a dispersão da luz por partículas é um ramo da eletromagnética computacional que trata da dispersão e radiação eletromagnética. absorção por partículas.
    No caso de geometrias pelas quais as soluções analíticas são conhecidas (como esferas , aglomerados de esferas, cilindros infinitos ), as soluções são normalmente calculadas em termos de séries infinitas . No caso de geometrias mais complexas e de partículas não homogêneas, as equações originais de Maxwell são discretizadas e resolvidas . Os efeitos de espalhamento múltiplo do espalhamento de luz por partículas são tratados por técnicas de transferência radiativa (consulte, por exemplo, códigos de transferência radiativa atmosférica ).
    O tamanho relativo de uma partícula de espalhamento é definido pelo parâmetro de tamanho, que é a razão entre sua dimensão característica e comprimento de onda
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI





    A dispersão de Compton é um exemplo de dispersão inelástica [1] de luz por uma partícula carregada livre, onde o comprimento de onda da luz dispersa é diferente daquele da radiação incidente. No experimento original de Compton (ver Fig. 1), a energia do fóton de raios X (± 17 keV) era muito maior que a energia de ligação do elétron atômico, de modo que os elétrons poderiam ser tratados como livres. A quantidade pela qual o comprimento de onda da luz muda é chamada de mudança de Compton . Embora exista dispersão nuclear de Compton, [2] a dispersão de Compton geralmente se refere à interação envolvendo apenas os elétrons de um átomo. O efeito Compton foi observado por Arthur Holly Compton em 1923 emUniversidade de Washington em St. Louis e verificada posteriormente por seu aluno de graduação YH Woo nos anos seguintes. Compton ganhou o Prêmio Nobel de 1927 em Física pela descoberta.
    O efeito é significativo porque demonstra que a luz não pode ser explicada apenas como um fenômeno de ondas . [3] A dispersão de Thomson , a teoria clássica de uma onda eletromagnética espalhada por partículas carregadas, não pode explicar mudanças no comprimento de onda em baixa intensidade: classicamente, luz de intensidade suficiente para o campo elétrico acelerar uma partícula carregada a uma velocidade relativística causará radiação. recuo de pressão e um deslocamento Doppler associado da luz dispersa, [4] mas o efeito se tornaria arbitrariamente pequeno a intensidades de luz suficientemente baixas, independentemente do comprimento de ondaAssim, a luz se comporta como se consistisse de partículas, se quisermos explicar o espalhamento de Compton de baixa intensidade. Ou a suposição de que o elétron pode ser tratado como livre é inválida, resultando na massa efetivamente infinita de elétrons igual à massa nuclear (veja, por exemplo, o comentário abaixo sobre a dispersão elástica dos raios X a partir desse efeito). O experimento de Compton convenceu os físicos de que a luz pode ser tratada como um fluxo de objetos semelhantes a partículas (quanta chamados fótons), cuja energia é proporcional à frequência da onda de luz.
    Como mostrado na Fig. 2, a interação entre um elétron e um fóton resulta no elétron receber parte da energia (fazendo com que ele recue) e um fóton da energia restante seja emitido em uma direção diferente da original, de modo que o momento geral do sistema também é conservado. Se o fóton disperso ainda tiver energia suficiente, o processo poderá ser repetido. Nesse cenário, o elétron é tratado como livre ou livremente ligado. A verificação experimental da conservação do momento nos processos individuais de espalhamento de Compton por Bothe e Geiger , bem como por Compton e Simon, tem sido importante para refutar a teoria de BKS .
    A dispersão de Compton é um dos três processos concorrentes quando os fótons interagem com a matéria. Em energias de alguns eV a alguns keV, correspondendo à luz visível através de raios X suaves, um fóton pode ser completamente absorvido e sua energia pode ejetar um elétron de seu átomo hospedeiro, um processo conhecido como efeito fotoelétrico . Fótons de alta energia de1.022 MeV e acima podem bombardear o núcleo e causar a formação de um elétron e um pósitron, um processo chamado produção de pares . A dispersão de Compton é a interação mais importante na região de energia intermediária.

    Descrição do fenômeno editar ]

    Fig. 2: Um fóton de comprimento de onda  vem da esquerda, colide com um alvo em repouso e um novo fóton de comprimento de onda  surge em um ângulo O alvo recua, transportando uma quantidade dependente de ângulo da energia incidente.
    No início do século XX, as pesquisas sobre a interação dos raios X com a matéria já estavam em andamento. Observou-se que quando raios-X de um comprimento de onda conhecido interagem com átomos, os raios-X são dispersos através de um ângulo e surgem em um comprimento de onda diferente relacionado a Embora o eletromagnetismo clássico tenha predito que o comprimento de onda dos raios dispersos deveria ser igual ao comprimento de onda inicial, [5] vários experimentos descobriram que o comprimento de onda dos raios dispersos era maior (correspondendo a menor energia) do que o comprimento de onda inicial. [5]
    Em 1923, Compton publicou um artigo na Physical Review que explicava a mudança dos raios X atribuindo um momento semelhante a partículas a quanta de luz (Einstein propôs quanta de luz em 1905 para explicar o efeito fotoelétrico, mas Compton não se baseou em Einstein. trabalhos). A energia dos quanta da luz depende apenas da frequência da luz. Em seu artigo, Compton derivou a relação matemática entre a mudança no comprimento de onda e o ângulo de dispersão dos raios X, assumindo que cada fóton de raio X disperso interagia com apenas um elétron. Seu artigo conclui relatando experimentos que verificaram sua relação derivada:
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    Onde
     é o comprimento de onda inicial,
     é o comprimento de onda após a dispersão,
    é a constante de Planck ,
    é a massa de repouso de elétrons ,
    é a velocidade da luz e
     é o ângulo de dispersão.
    A quantidade h/e c é conhecida como comprimento de onda do elétron de Compton ; é igual a2,43 × 10 -12  m . O deslocamento do comprimento de onda λ ′ - λ é pelo menos zero (para θ = 0 ° ) e no máximo duas vezes o comprimento de onda de Compton do elétron (para θ = 180 ° ).
    Compton descobriu que alguns raios X não sofreram alterações no comprimento de onda, apesar de estarem espalhados por grandes ângulos; em cada um desses casos, o fóton não conseguiu ejetar um elétron. [5] Assim, a magnitude da mudança não está relacionada ao comprimento de onda de Compton do elétron, mas ao comprimento de onda de Compton de todo o átomo, que pode ser superior a 10000 vezes menor. Isso é conhecido como dispersão "coerente" de todo o átomo, uma vez que o átomo permanece intacto, não ganhando excitação interna.
    Nos experimentos originais de Compton, o deslocamento do comprimento de onda dado acima foi o observável diretamente mensurável. Em experimentos modernos, é convencional medir as energias, não os comprimentos de onda, dos fótons dispersos. Para uma dada energia incidente, a energia de saída do fóton no estado final, , É dado por
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    Derivação da fórmula de espalhamento editar ]

    Fig. 3: Energias de um fóton a 500 keV e um elétron após a dispersão de Compton.
    Um fóton γ com comprimento de onda λ colide com um elétron e em um átomo, que é tratado como estando em repouso. A colisão faz com que o elétron recue , e um novo fóton γ 'com comprimento de onda λ ' emerge no ângulo θ a partir do caminho de entrada do fóton. Vamos e 'denotam o elétron após a colisão. Compton permitiu a possibilidade de que a interação às vezes acelera o elétron a velocidades suficientemente próximas da velocidade da luz para exigir a aplicação da teoria da relatividade especial de Einstein para descrever adequadamente sua energia e momento.
    Na conclusão do trabalho de Compton em 1923, ele relatou resultados de experimentos confirmando as previsões de sua fórmula de espalhamento, apoiando assim a suposição de que os fótons carregam momento, bem como energia quantizada. No início de sua derivação, ele postulou uma expressão para o momento de um fóton igualando a já estabelecida relação de energia de massa de Einstein de às energias quantificadas de fótons de , que Einstein havia postulado separadamente. E se, a massa equivalente de fóton deve ser O momento do fóton é então simplesmente essa massa efetiva vezes a velocidade invariante do quadro do fóton c . Para um fóton, seu momento, e, portanto, hf pode ser substituído por pc para todos os termos de momento do fóton que surgem no decorrer da derivação abaixo. A derivação que aparece no artigo de Compton é mais concisa, mas segue a mesma lógica na mesma sequência que a derivação a seguir.
    conservação de energia  apenas equivale à soma das energias antes e depois da dispersão.
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    Compton postulou que os fótons carregam impulso; [5] Assim, a partir da conservação do momento , o momento das partículas deve ser similarmente relacionado por
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    no qual () é omitido na suposição de que é efetivamente zero.
    As energias dos fótons estão relacionadas às frequências de

    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    onde h é constante de Planck .
    Antes do evento de espalhamento, o elétron é tratado como suficientemente próximo de estar em repouso, para que sua energia total consista inteiramente na equivalência massa-energia de sua massa (em repouso) ,
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

    Após a dispersão, a possibilidade de o elétron ser acelerado para uma fração significativa da velocidade da luz exige que sua energia total seja representada usando a relação energia-momento relativística
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    Substituir essas quantidades na expressão de conservação de energia dá
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

    Essa expressão pode ser usada para encontrar a magnitude do momento do elétron espalhado,
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    Observe que essa magnitude do momento ganho pelo elétron (anteriormente zero) excede a energia / c perdida pelo fóton,
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    A equação (1) relaciona as várias energias associadas à colisão. A mudança do momento do elétron envolve uma mudança relativística na energia do elétron, portanto, não está simplesmente relacionada à mudança na energia que ocorre na física clássica. A mudança da magnitude do momento do fóton não está relacionada apenas à mudança de sua energia; também envolve uma mudança de direção.
    Resolver a conservação da expressão do momento para o momento do elétron disperso fornece
    Fazer uso do produto escalar produz o quadrado de sua magnitude,
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

    Em antecipação a  sendo substituído por , multiplique ambos os lados por ,
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    Após substituir os termos do momento do fóton por , obtemos uma segunda expressão para a magnitude do momento do elétron espalhado,
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

    Igualar as expressões alternativas para esse momento dá
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

    que, após avaliar o quadrado e cancelar e reorganizar os termos, produz ainda mais
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

    Dividindo os dois lados por  rendimentos
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


    Finalmente, como  = f 'λ' = c ,
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

    Pode-se observar ainda que o ângulo φ do elétron de saída com a direção do fóton de entrada é especificado por
    x


    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI








    Pressão de radiação é a pressão exercida sobre qualquer superfície devido à troca de momento entre o objeto e o campo eletromagnético . Isso inclui o momento da luz ou radiação eletromagnética de qualquer comprimento de onda que é absorvido , refletido ou de outra forma emitido (por exemplo , radiação do corpo negro ) pela matéria em qualquer escala (de objetos macroscópicos a partículas de poeira e moléculas de gás). [1] [2] [3]
    As forças geradas pela pressão de radiação são geralmente muito pequenas para serem notadas nas circunstâncias cotidianas; no entanto, eles são importantes em alguns processos físicos. Isso inclui particularmente objetos no espaço sideral, onde geralmente é a força principal que atua sobre objetos além da gravidade e onde o efeito líquido de uma força minúscula pode ter um grande efeito cumulativo por longos períodos de tempo. Por exemplo, se os efeitos da pressão de radiação do sol sobre a sonda do programa Viking fossem ignorados, a sonda teria perdido a órbita de Marte em cerca de 15.000 km (9.300 milhas). [4] A pressão de radiação da luz das estrelas é crucial em vários aspectos astrofísicos.processos também. O significado da pressão de radiação aumenta rapidamente a temperaturas extremamente altas e às vezes pode diminuir a pressão normal do gás , por exemplo, em interiores estelares e armas termonucleares .
    A pressão de radiação da luz solar na Terra é equivalente à pressão exercida em cerca de um milésimo de grama em uma área de 1 metro quadrado (medida em unidades de força: aproximadamente 10 μN / m2). não verificado no corpo ]
    A pressão de radiação também pode ser explicada considerando o momento de um campo eletromagnético clássico ou em termos de momento dos fótons , partículas de luz. A interação de ondas eletromagnéticas ou fótons com a matéria pode envolver uma troca de momento . Devido à lei da conservação do momento , qualquer mudança no momento total das ondas ou fótons deve envolver uma mudança igual e oposta no momento da matéria com a qual ele interagiu ( terceira lei do movimento de Newton ), conforme ilustrado no anexo. figura para o caso da luz ser perfeitamente refletida por uma superfície. Essa transferência de momento é a explicação geral para o que chamamos de pressão de radiação.

      Descoberta editar ]

      Johannes Kepler apresentou o conceito de pressão de radiação em 1619 para explicar a observação de que a cauda de um cometa sempre aponta para longe do Sol. [5]
      A afirmação de que a luz, como radiação eletromagnética , tem a propriedade de momento e, portanto, exerce pressão sobre qualquer superfície à qual está exposta, foi publicada por James Clerk Maxwell em 1862 e comprovada experimentalmente pelo físico russo Pyotr Lebedev em 1900 [6] e por Ernest Fox Nichols e Gordon Ferrie Hull em 1901. [7] A pressão é muito fraca, mas pode ser detectada permitindo que a radiação caia sobre uma palheta de metal reflexivo delicadamente equilibrada em um radiômetro Nichols (isso não deve ser confundido com Crookes radiômetro, cujo movimento característico não é causado pela pressão da radiação, mas pelo impacto nas moléculas de gás).

      Teoria editar ]

      A pressão de radiação pode ser vista como uma conseqüência da conservação do momento, dado o momento atribuído à radiação eletromagnética. Esse momento pode ser igualmente bem calculado com base na teoria eletromagnética ou no momento combinado de um fluxo de fótons, dando resultados idênticos aos mostrados abaixo.

      Pressão de radiação do momento de uma onda eletromagnética editar ]

      De acordo com a teoria do eletromagnetismo de Maxwell, uma onda eletromagnética carrega momento, que será transferida para uma superfície opaca que atingir.
      O fluxo de energia (irradiância) de uma onda plana é calculado usando o vetor de Poynting , cuja magnitude denotamos por S. S dividida pela velocidade da luz é a densidade do momento linear por unidade de área (pressão) do campo eletromagnético. Portanto, dimensionalmente, o vetor de Poynting é S = (potência / área) = (taxa de trabalho / área) = (ΔF / Δt) Δx / área, que é a velocidade da luz, c = Δx / Δt, vezes a pressão, ΔF / área. Essa pressão é experimentada como pressão de radiação na superfície:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

      Onde é pressão (geralmente em Pascal ),é a irradiância incidente (geralmente em W / m 2 ) eé a velocidade da luz no vácuo.
      Se a superfície for plana em um ângulo α em relação à onda incidente, a intensidade na superfície será reduzida geometricamente pelo cosseno desse ângulo e o componente da força de radiação contra a superfície também será reduzido pelo cosseno de α, resultando em uma pressão:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

      O momento da onda incidente está na mesma direção dessa onda. Mas apenas o componente desse momento normal para a superfície contribui para a pressão na superfície, como indicado acima. O componente dessa força tangente à superfície não é chamado de pressão. [8]

      Pressão de radiação da reflexão editar ]

      O tratamento acima para uma onda incidente é responsável pela pressão de radiação sofrida por um corpo preto (totalmente absorvente). Se a onda for especularmente refletida , o recolhimento devido à onda refletida contribuirá ainda mais para a pressão de radiação. No caso de um refletor perfeito, essa pressão será idêntica à pressão causada pela onda incidente:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

      dobrando assim a pressão líquida de radiação na superfície:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

      Para uma superfície parcialmente refletiva, o segundo termo deve ser multiplicado pela refletividade (também conhecido como coeficiente de intensidade da reflexão), para que o aumento seja menor que o dobro. Para uma superfície difusamente reflexiva , os detalhes da reflexão e da geometria devem ser levados em consideração, resultando novamente em um aumento da pressão líquida de radiação menor que o dobro.

      Pressão de radiação por emissão editar ]

      Assim como uma onda reflectida a partir de um corpo contribui para a pressão de radiação líquida experimentado, um corpo que emite radiação de sua própria (em vez de reflectido) obtém-se uma pressão de radiação novamente dada pela irradiação de que a emissão na direcção normal à superfície e :
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      A emissão pode ser da radiação do corpo negro ou de qualquer outro mecanismo radiativo. Como todos os materiais emitem radiação no corpo negro (a menos que sejam totalmente refletivos ou no zero absoluto), essa fonte de pressão de radiação é onipresente, mas geralmente muito pequena. No entanto, como a radiação do corpo negro aumenta rapidamente com a temperatura (de acordo com a quarta potência da temperatura, conforme determinado pela lei de Stefan-Boltzmann ), a pressão da radiação devido à temperatura de um objeto muito quente (ou devido à radiação do corpo negro de ambiente similarmente quente) pode se tornar muito significativo. Isso se torna importante em interiores estelares que estão a milhões de graus.

      Pressão de radiação em termos de fotões editar ]

      A radiação eletromagnética pode ser vista em termos de partículas e não de ondas; essas partículas são conhecidas como fótons . Os fótons não têm massa de repouso; no entanto, os fótons nunca estão em repouso (eles se movem na velocidade da luz) e adquirem um momento que é dado por:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

      onde p é impulso, h é constante de Planck , é λ comprimento de onda , e c é a velocidade da luz no vácuo. p é a energia de um único fóton dado por:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      A pressão de radiação novamente pode ser vista como a transferência do momento de cada fóton para a superfície opaca, mais o momento devido a um (possível) fóton de recuo para uma superfície (parcialmente) refletida. Como uma onda incidente de irradiância f em uma área A tem uma potência f A , isso implica um fluxo de f / E pfótons por segundo por unidade de área atingindo a superfície. Combinando isso com a expressão acima para o momento de um único fóton, resulta nas mesmas relações entre irradiância e pressão de radiação descritas acima usando eletromagnetismo clássico. E, novamente, fótons refletidos ou de outra forma emitidos contribuirão para a pressão líquida de radiação de forma idêntica.

      Compressão em um campo de radiação uniforme editar ]

      Em geral, a pressão das ondas eletromagnéticas pode ser obtida a partir do desaparecimento do traço do tensor eletromagnético : Como esse traço é igual a 3 P - u , obtemos
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      onde u é a densidade da radiação por unidade de volume.
      Isso também pode ser demonstrado no caso específico da pressão exercida sobre as superfícies de um corpo em equilíbrio térmico com seus arredores, a uma temperatura T : O corpo será cercado por um campo de radiação uniforme descrito pela lei de radiação de corpo negro de Planck , e experimentará uma pressão compressiva devido a essa radiação, seu reflexo e sua própria emissão de corpos negros. A partir disso, pode ser demonstrado que a pressão resultante é igual a um terço da energia radiante total por unidade de volume no espaço circundante. [9] [10] [11] [12]
      Usando a lei de Stefan-Boltzmann , isso pode ser expresso como
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      Pressão de radiação solar editar ]

      A pressão da radiação solar é devida à radiação do sol a distâncias mais próximas, principalmente no sistema solar . Embora ele atue em todos os objetos, seu efeito líquido é geralmente maior em corpos menores, pois eles têm uma proporção maior de área superficial e massa. Todas as naves espaciais sofrem essa pressão, exceto quando estão atrás da sombra de um corpo em órbita maior .
      A pressão da radiação solar em objetos próximos à Terra pode ser calculada usando a irradiância do sol em 1  UA , conhecida como constante solar ou SC , cujo valor é definido em 1361  W / 2 a partir de 2011. [13]
      Todas as estrelas têm uma distribuição espectral de energia que depende da temperatura da superfície. A distribuição é aproximadamente a da radiação do corpo negro . Essa distribuição deve ser levada em consideração no cálculo da pressão de radiação ou na identificação de materiais refletores para otimizar uma vela solar, por exemplo.

      Pressões de absorção e reflexão editar ]

      A pressão da radiação solar à distância da Terra do sol pode ser calculada dividindo a constante solar SC (acima) pela velocidade da luz c. Para uma folha absorvente de frente para o sol, isso é simplesmente: [14]
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      Esse resultado está na unidade SI Pascals , equivalente a N / m 2 ( newtons por metro quadrado). Para uma folha em ângulo α com o sol, a área efetiva A de uma folha é reduzida por um fator geométrico que resulta em uma força na direção da luz solar de:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      Para encontrar o componente dessa força normal na superfície, outro fator cosseno deve ser aplicado, resultando em uma pressão P na superfície de:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      Observe, no entanto, que, para explicar o efeito líquido da radiação solar em uma espaçonave, por exemplo, seria necessário considerar a força total (na direção longe do sol) dada pela equação anterior, em vez de apenas o componente normal à superfície que identificamos como "pressão".
      A constante solar é definida para a radiação do sol à distância da Terra, também conhecida como uma unidade astronômica (AU). Conseqüentemente, a uma distância de R unidades astronômicas ( sendo R sem dimensão), aplicando a lei do quadrado inverso , encontraríamos:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

      Por fim, considerando não uma superfície absorvente, mas perfeitamente refletora, a pressão é dobrada devido à onda refletida, resultando em:
      x


      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


      Observe que, diferentemente do caso de um material absorvente, a força resultante em um corpo refletor é dada exatamente por essa pressão agindo normal à superfície, com as forças tangenciais do incidente e as ondas refletidas se cancelando. Na prática, os materiais não refletem nem absorvem totalmente, portanto a força resultante será uma média ponderada das forças calculadas usando essas fórmulas.






      O espalhamento Thomson é o espalhamento elástico da radiação eletromagnética por uma partícula carregada livre , conforme descrito pelo eletromagnetismo clássico . É apenas o limite de baixa energia da dispersão de Compton : a energia cinética e a frequência de fótons da partícula não mudam como resultado da dispersão. [1] Este limite é válido desde que a energia do fóton seja muito menor que a energia da massa da partícula:, ou equivalente, se o comprimento de onda da luz for muito maior que o comprimento de onda de Compton da partícula.

        Descrição do fenômeno editar ]

        No limite de baixa energia, o campo elétrico da onda incidente (fóton) acelera a partícula carregada, fazendo com que, por sua vez, emita radiação na mesma frequência que a onda incidente e, assim, a onda é dispersa. A dispersão de Thomson é um fenômeno importante na física do plasma e foi explicada pela primeira vez pelo físico JJ Thomson . Desde que o movimento da partícula seja não relativista (ou seja, sua velocidade seja muito menor que a velocidade da luz), a principal causa da aceleração da partícula será devido ao componente do campo elétrico da onda incidente. Numa primeira aproximação, a influência do campo magnético pode ser negligenciada. citação necessária ]A partícula se moverá na direção do campo elétrico oscilante, resultando em radiação dipolo eletromagnética . A partícula em movimento irradia mais fortemente em uma direção perpendicular à sua aceleração e essa radiação será polarizada ao longo da direção do seu movimento. Portanto, dependendo da localização de um observador, a luz espalhada por um pequeno elemento de volume pode parecer mais ou menos polarizada.
        Thomson scattering geometry.png
        Os campos elétricos da onda de entrada e observada (isto é, a onda de saída) podem ser divididos nos componentes situados no plano de observação (formado pelas ondas de entrada e observadas) e nos componentes perpendiculares a esse plano. Os componentes situados no plano são referidos como "radiais" e os perpendiculares ao plano são "tangenciais". (É difícil fazer com que esses termos pareçam naturais, mas é uma terminologia padrão.)
        O diagrama à direita mostra o plano de observação. Ele mostra o componente radial do campo elétrico incidente, que faz com que as partículas carregadas no ponto de dispersão exibam um componente radial de aceleração (isto é, um componente tangente ao plano de observação). Pode-se demonstrar que a amplitude da onda observada será proporcional ao cosseno de χ, o ângulo entre o incidente e as ondas observadas. A intensidade, que é o quadrado da amplitude, será então diminuída por um fator de cos 2 (χ). Pode-se observar que os componentes tangenciais (perpendiculares ao plano do diagrama) não serão afetados dessa maneira.
        A dispersão é melhor descrita por um coeficiente de emissão que é definido como ε onde ε dt dV dΩ dλ é a energia espalhada por um elemento de volumeno tempo dt no ângulo sólido dΩ entre os comprimentos de onda λ e λ + dλ. Do ponto de vista de um observador, existem dois coeficientes de emissão, ε r correspondente à luz polarizada radialmente e ε t correspondente à luz polarizada tangencialmente. Para luz incidente não polarizada, estas são fornecidas por:
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


        Onde  é a densidade das partículas carregadas no ponto de dispersão,  é o fluxo incidente (ou seja, energia / tempo / área / comprimento de onda) e é a seção transversal da Thomson para a partícula carregada, definida abaixo. A energia total irradiada por um elemento de volume no tempo dt entre os comprimentos de onda λ e λ + dλ é encontrado integrando a soma dos coeficientes de emissão em todas as direções (ângulo sólido):
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


        A seção transversal diferencial da Thomson, relacionada à soma dos coeficientes de emissividade, é dada por

        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


        expresso em unidades SI ; q é a carga por partícula, m a massa da partícula euma constante, a permissividade do espaço livre. (Para obter uma expressão em unidades cgs , reduza o fator de 4 π ε 0. ) Integrando sobre o ângulo sólido, obtemos a seção transversal Thomson
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


        em unidades SI.
        A característica importante é que a seção transversal é independente da frequência de fótons. A seção transversal é proporcional por um fator numérico simples ao quadrado do raio clássico de uma partícula pontual de massa m e carga q, a saber
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


        Alternativamente, isso pode ser expresso em termos de , o comprimento de onda de Compton e a estrutura fina constante :
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

        Para um elétron, a seção transversal da Thomson é numericamente dada por:



        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI
        efeito Kapitza-Dirac é um efeito mecânico quântico que consiste na difração da matéria por uma onda estacionária de luz. [1] [2] O efeito foi predito pela primeira vez como a difração de elétrons de uma onda estacionária de luz por Paul Dirac e Pyotr Kapitsa (ou Peter Kapitza) em 1933. [3] O efeito depende da dualidade onda-partícula da matéria como afirmado pela hipótese de Broglie em 1924.

        Explicação editar ]

        Em 1924, o físico francês Louis de Broglie postulou que a matéria exibe uma natureza ondulatória dada por:
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI


        onde λ é o comprimento de onda de partícula, h é a constante de Planck , e p é o impulso da partícula. A partir disso, segue-se que efeitos de interferência entre partículas da matéria ocorrerão. Isso forma a base do efeito Kapitza – Dirac. Especificamente, a dispersão Kapitza – Dirac opera no regime Raman – Nath. Isso quer dizer que o tempo de interação da partícula com o campo de luz é suficientemente curto em sua duração, de modo que o movimento das partículas em relação ao campo de luz possa ser negligenciado. Matematicamente, isso significa que o termo de energia cinética da interação hamiltoniana pode ser negligenciado. Essa aproximação é válida se o tempo de interação for menor que o inverso da frequência de recuo da partícula,Isso é análogo à aproximação de lente fina em óptica. Um feixe coerente de partículas incidentes em uma onda estacionária de radiação eletromagnética (normalmente luz) será difratado de acordo com a equação:
        onde n é um número inteiro, λ é o comprimento de onda de Broglie das partículas incidentes, d é o espaçamento da grade e θ é o ângulo de incidência. Esta difração de ondas de matéria é análoga à difração óptica da luz através de uma grade de difração . Outra incidência desse efeito é a difração de átomos ultra-frios (e, portanto, quase estacionários) por uma rede óptica pulsada por um período muito curto. A aplicação de uma rede óptica transfere o impulso dos fótons, criando a rede óptica para os átomos. Essa transferência de momento é um processo de dois fótons, o que significa que os átomos adquirem momento em múltiplos de 2ħk, onde ké o vetor de ondas do eletromagnético. A frequência de recuo do átomo, como pode ser expressa por:
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

        onde m é a massa da partícula. A energia de recuo é dada por
        x


        FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI

        quinta-feira, 21 de novembro de 2019




        interpretação de Bohm ou teoria de de Broglie-Bohm da mecânica quântica, também conhecida como teoria da onda pilotomecânica bohmiana e interpretação causal, generaliza a teoria da onda piloto de Louis de Broglie de 1927, a qual apresenta que ambos, onda e partícula, são reais. David Bohm, aluno de Robert Oppenheimer e contemporâneo de Albert Einstein em Princeton, após publicar Teoria Quântica, elogiada por Einstein como a mais clara explicação que lera sobre o tema, reinterpretou a física quântica de forma divergente da interpretação de Copenhague.
        Segundo a interpretação de Bohm, a função de onda evolui de acordo com a equação de Schrödinger, que de algum modo "guia" a partícula. Isto assumindo um universo simples e determinístico, e não dividido (diferindo da interpretação de Copenhague e da interpretação de muitos mundos). A teoria é explicitamente não local. Isto quer dizer que o estado do universo evolui suavemente através do tempo, sem o colapso da função de onda quando uma medição ocorre, como na interpretação de Copenhague. Contudo, deve-se assumir a existência de um grande número de variáveis ocultas, as quais nunca poderiam ser diretamente mensuradas.

          Equação de Schroedinger[editar | editar código-fonte]



          Inicialmente, Bohm dividiu a equação de Schrödinger em duas partes. A primeira era uma recapitulação da física newtoniana clássica, e a segunda um campo informativo semelhante a ondas. A equação de Schrödinger descreve como o estado quântico de um sistema físico muda com o tempo. Esta equação pode descrever sistemas molecularesatômicos e subatômicos, como também sistemas macroscópicos.[1]
          Contrariamente a Niels Bohr (complementaridade onda-partícula) e à escola de Copenhague, Bohm postulou que o elétron se comporta como uma partícula clássica comum, mas tendo acesso a informação sobre o resto do universo. Bohm denominou o segundo termo de potencial quântico, um campo informativo funcional que fornece ao elétron informações sobre o resto do universo físico. Demonstrou que a influência desse potencial quântico dependia apenas da forma, e não da magnitude desse tipo de função de onda, sendo portanto, independente da separação no espaço: todo ponto no espaço contribui com informação para o elétron.
          Esta explicação para o comportamento do elétron tem relação com o conceito de holomovimento e com as ordens implícita e explícita que o compõem.

          Fundamentação matemática[editar | editar código-fonte]

          ,
          x

          FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

          TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

          x
           [EQUAÇÃO DE DIRAC].

           + FUNÇÃO TÉRMICA.

             +    FUNÇÃO DE RADIOATIVIDADE

            ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

            + ENTROPIA REVERSÍVEL 

          +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

           ENERGIA DE PLANCK

          X


          • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
            ΤDCG
            X
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli + 
            DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

          • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
            x
            sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
            x
          • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
          • X
          • T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D

          onde a função de onda ψ(r,t) é uma função complexa da posição r e tempo t, a densidade probabilidade ρ(r,t) é uma função real definida por
          .
          x

          FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

          TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

          x
           [EQUAÇÃO DE DIRAC].

           + FUNÇÃO TÉRMICA.

             +    FUNÇÃO DE RADIOATIVIDADE

            ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

            + ENTROPIA REVERSÍVEL 

          +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

           ENERGIA DE PLANCK

          X


          • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
            ΤDCG
            X
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli + 
            DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

          • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
            x
            sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
            x
          • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
          • X
          • T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D

          Sem perda de generalidade, podemos expressar a função de onda ψ em termos da densidade de probabilidade real ρ = |ψ|2 e uma função de fase da variável real S que são ambas também funções de posição e tempo:
          .
          x

          FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

          TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

          x
           [EQUAÇÃO DE DIRAC].

           + FUNÇÃO TÉRMICA.

             +    FUNÇÃO DE RADIOATIVIDADE

            ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

            + ENTROPIA REVERSÍVEL 

          +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

           ENERGIA DE PLANCK

          X


          • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
            ΤDCG
            X
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli + 
            DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

          • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
            x
            sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
            x
          • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
          • X
          • T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D

          Quando fazemos isto, a equação de Schrödinger separa-se em duas equações,
          com
          .
          x

          FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

          TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

          x
           [EQUAÇÃO DE DIRAC].

           + FUNÇÃO TÉRMICA.

             +    FUNÇÃO DE RADIOATIVIDADE

            ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

            + ENTROPIA REVERSÍVEL 

          +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

           ENERGIA DE PLANCK

          X


          • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
            ΤDCG
            X
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli + 
            DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

          • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
            x
            sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
            x
          • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
          • X
          • T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D

          Se identificarmos o momento como  e a energia como , então (1) é simplesmente a equação de continuidade tendo a probabilidade de
          ,
          x

          FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

          TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

          x
           [EQUAÇÃO DE DIRAC].

           + FUNÇÃO TÉRMICA.

             +    FUNÇÃO DE RADIOATIVIDADE

            ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

            + ENTROPIA REVERSÍVEL 

          +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

           ENERGIA DE PLANCK

          X


          • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
            ΤDCG
            X
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli + 
            DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

          • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
            x
            sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
            x
          • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
          • X
          • T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D

          e (2) estabelece que energia total é a soma da energia potencial, energia cinética, e um termo adicional Q, que pode ser chamado de potencial quântico. Não é por acaso que S possua a unidade e típico nome variável de ação.
          A partícula é vista como tendo uma posição definida, com uma distribuição de probabilidade ρ que pode ser calculada da função de onda ψ. A função de onda "guia" a partícula por meio do potencial quântico Q. Muito deste formalismo foi desenvolvido por Louis de Broglie. Bohm estendeu o caso de uma simples partícula para a o de várias partículas e reinterpretou as equações. Elas também foram estendias para incluir o spin, embora a extensão para condições relativísticas não tenha sido bem sucedida.




          Interpretação de muitos mundos (ou IMM) é uma interpretação da mecânica quântica que propõe a existência de múltiplos "universos paralelos". A IMM foi formulada inicialmente por Hugh Everett para a explicação de alguns processos não determinísticos (tais como medição) na mecânica quântica.
          Embora varias versões de IMM tenham sido propostas desde o trabalho original de Everett, todas compartilham duas ideias-chave: a primeira delas é a existência de uma função estado para todo universo a qual obedece à equação de Schrödinger para todo tempo e para a qual não há processo de colapso da onda. A segunda ideia é que este estado universal é uma sobreposição quântica de vários, possivelmente infinitos, estados de idênticos universos paralelos não comunicantes.
          As ideias da IMM originaram-se na tese de Ph. D. de Hugh Everett na Universidade de Princeton, mas a frase “muitos mundos” é devida a Bryce DeWitt, que posteriormente desenvolveu algumas das ideias presentes no trabalho original de Everett. A formulação de DeWitt tornou-se tão popular que muitos confundem-na com o trabalho original de Everett.
          IMM é uma das muitas hipóteses multiverso na física e na filosofia.

            Muitos mundos e o problema da interpretação[editar | editar código-fonte]

            Como outras interpretações da mecânica quântica, a interpretação de muitos mundos é motivada pelo comportamento que pode ser ilustrado pela experiência da dupla fenda. Quando partículas de luz (ou algo semelhante) são conduzidos através de uma dupla-fenda, uma explicação baseada no comportamento de onda para luz é necessária para identificar onde as partículas deverão ser observadas. Já quando as partículas são observadas, elas se mostram como partículas e não como ondas não localizadas. Pela interpretação de Copenhague da mecânica quântica é proposto um processo de "colapso" do comportamento de onda para o de partícula para explicar o fenômeno observado.
            Na época em que John von Neumann escreveu seu famoso tratado Mathematische Grundlagen der Quantenmechanik em 1932, o fenômeno do "colapso da função de onda" era acomodado em dentro da formulação matemática da mecânica quântica postulando-se que havia dois processos de transformação da função de onda:
            1. A mudança descontinua e de natureza aleatória que é ocasionada pelo processo de observação.
            2. evolução no tempo de um sistema isolado que obedece a equação de Schrödinger, que é determinista.
            O fenômeno do colapso da função de onda por (1) proposto pela interpretação Copenhague foi amplamente considerada como artificial e ad-hoc, e consequentemente uma interpretação alternativa na qual o comportamento da medição pudesse ser entendido a partir de um principio físico mais fundamental era amplamente desejável.
            A tese de doutorado de Everett tinha a intenção de prover uma interpretação alternativa. Everett propôs que para um sistema composto (por exemplo, aquele formado por uma partícula que interage com o aparato de medição), não se pode associar um estado bem definido a um determinado subsistema. Isto levou a Everett sugerir a noção de estado relativo de um subsistema em relação a outro.
            O formalismo de Everett para compreender o processo do colapso da função de onda como um resultado da observação é matematicamente equivalente a superposição de funções de onda. Everett deixou a pesquisa física logo apos obter seu Ph.D, tendo como resultado que suas ideias foram desenvolvidas por outros pesquisadores.
            O princípio da simultaneidade dimensional, estipula que: dois ou mais objetos físicos, realidades, percepções e objetos não-físicas, podem coexistir no mesmo espaço-tempo. Este princípio tem uma correspondência com a teoria da interpretação de vários mundos, A IMM e a teoria do multiverso de nível III, embora não tenha sido levantada por Hugh Everett, nem por Max Tegmark.

            Visão geral[editar | editar código-fonte]

            Na formulação de Everett, um aparato de medição M e um sistema objeto S formam um sistema composto, cada parte do qual antes da medição existem em estados bem definidos (mas tempo-dependentes). A medição é tida como causadora da interação de M e S. Apos S interagir com M, não é mais possível descrever ambos sistemas como estados independentes. De acordo com Everett, a única descrição possível de cada sistema são estados relativos: por exemplo o estado relativo de S dado o estado de M ou o estado relativo de M dado o estado de S. Na formulação de DeWitt, o estado de S após a medição é dado pela superposição quântica das historias alternativas de S.
            Por exemplo, considere o menor sistema quântico verdadeiro possível S, como mostrado na ilustração. Este descreve por exemplo, o estado-spin de um elétron. Considerando um eixo especifico (digamos o eixo z) o pólo norte representando o spin "para cima" e o polo sul, spin "para baixo". Os estados de superposição do sistema descrito pela (a superfície da) esfera, chamada de esfera de Bloch. Para se executar uma medição em S, deve-se interagi-lo com um outro sistema similar a M.
            Após esta interação, o sistema combinado é descrito por um estado que abrange um espaço de seis dimensões (o motivo para o número 6 é explicado no artigo sobre a esfera de Bloch). Este objeto de 6 dimensões pode também ser concebido a como uma superposição quântica de duas "histórias alternativas" do sistema original S, uma das quais "para cima" foi observada e a outra na qual o "para baixo" foi observado. Cada subsequente medição binária (que é uma interação com o sistema M) causa uma divisão similar na árvore da história. Portanto após três medições, o sistema pode se apresentar como a superposição quântica, o sistema pode ser representado inicialmente como uma superposição quântica de 8= 2 × 2 × 2 copias do sistema original S.
            A terminologia aceita é de algum modo enganosa porque é incorreto considerar o universo esteja se dividindo um certo número de vez.

            Estado relativo[editar | editar código-fonte]

            O objetivo do formalismo do estado-relativo, como originalmente proposto Everett em 1957 na sua dissertação de doutorado, foi interpretar o efeito da observação externa englobada inteiramente no arcabouço desenvolvido por DiracVon Neumann e outros, descartando totalmente o mecanismo ad-hoc de colapso da função de onda. Desde trabalho original de Everett, tem surgido alguns formalismos similares na literatura. Um destes será discutido na próxima seção.
            Do formalismo do estado-relativo, nos podemos obter a interpretação do estado-relativo por duas suposições. A primeira é que a função de onda não é só uma simples descrição do estado do objeto, mas que ela é realmente inteiramente equivalente ao objeto, esta exigência foi muito comum em outras interpretações. A segunda e que o observador não possua uma condição especial, ao contrario da interpretação de Copenhague a qual considera o colapso da função de onda como um tipo especial de evento que ocorre como resultado da observação.
            A interpretação de muitos mundos é reconstruída por DeWitt a partir de um formalismo de estado (e interpretação). Everett refere-se ao sistema (tal como o observador) como sendo dividido por uma observação, cada divisão corresponde a um resultado possível de se obter pela observação. Estas divisões geram uma árvore de possibilidade como mostrada no gráfico abaixo. Subsequentemente DeWitt introduziu o termo "mundo" para descrever uma história completa da medição de um observador, a qual corresponde a um caminho iniciado na raiz daquela árvore. Note que "divisão" neste sentido, é dificilmente novo ou inédito na mecânica quântica. A ideia de um espaço de histórias completamente alternativas já foi usada pela teoria da probabilidade desde meados de 1930, por exemplo, para o modelo do movimento Browniano. A inovação no ponto de vista DeWitt's foi que as várias histórias completamente alternativas podem se sobrepor para formar um novo estado.
            No contexto da interpretação de muitos mundos, a equação de Schrödinger influência todos os instantes e lugares. Uma observação ou medição de um objeto por um observador é modelada pela aplicação da equação de onda de Schrödinger a todo sistema englobando o observador e o objeto. Uma consequência é que cada observação pode ser tida como a causadora de divisão da função universal de onda na superposição quântica de dois ou mais ramos não comunicantes, ou "mundos". Desde muitos eventos semelhantes de observação estão constantemente acontecendo, há um enorme número de simultâneos estados de existência simultâneos.
            Se um sistema é composto de dois ou mais subsistemas, o estado do sistema típico será uma superposição dos produtos dos estados dos subsistemas. Uma vez que os subsistemas interajam, seus estados não mais completamente independentes. Cada produto dos estados subsistema irão acabar envolvendo no decorrer do tempo o estada dos outros. Os subsistemas se tornaram entrelaçados e não será possível mais considerá-los como sendo independentes. O termo usado por Everett para este entrelaçamento de subsistemas foi estado relativo, desde que cada subsistema deve ser agora considerado relativamente aos outros subsistemas como o qual ele tenha interagido.

            Propriedades comparativas e suporte experimental[editar | editar código-fonte]

            Uma das características a se salientar da interpretação de muitos mundos é que o observador não requer de uma construção especial (tal como o colapso da função de onda) para ser explicada. Muitos físicos, por outro lado, não gostam da implicação de haver infinitos universos alternativos não observáveis.
            Como desde 2002, não foram feitos experimentos práticos que para distinguir entre as interpretações de muitos mundos e Copenhague, e na ausência de dados amostrais, a escolha de uma delas é de caráter pessoal. Porem, uma das áreas de pesquisa e planejar experimentos os quais possam distinguir entre as várias interpretações da mecânica quântica, embora exista algum ceticismo se esta é mesmo uma questão importante a ser respondida.
            Realmente, pode ser argumentado que há uma equivalência matemática entre Copenhague (quando é expressa, por exemplo, como um conjunto de algoritmos para manipulação densidade de estado) e muitos mundos (o qual da as mesmas respostas das de Copenhague usando uma visão matemática mais elaborada) o que parece mostrar que esta empreitada seja impossível. Porem, esta equivalência algorítmica não deve ser verdadeira em escala cosmológica. Foi proposto que em um mundo com infinitos universos alternativos, os universos que se colapsam existem por um tempo menor que os universos que se expandem, este fenômeno pode causar um diferença detectável probabilidade entre as interpretações de muitos mundos e Copenhague.
            Na interpretação de Copenhague, a matemática da mecânica quântica permite prever a probabilidades para a ocorrência de vários eventos. Na interpretação de muitos mundos, todos estes eventos ocorrem simultaneamente. O que se obtém por estes cálculos de probabilidade? E porque nos devemos observar, em nossa história, que eventos com alta probabilidade parecem ocorrer com mais frequência?
            Uma das respostas para esta questão é dizer que há medição probabilidade no espaço de todos universos, onde um possível universo é uma arvore completa do universo de ramificação. Isto é o que realmente este calculo produz. Então nos deveríamos esperar encontrar-nos mesmo em um universo com alta probabilidade do que em um de relativamente baixa probabilidade: mesmo que todas as saídas em uma experimento ocorram, elas não ocorrem de igual maneira.
            A interpretação de muitos mundos não deve ser confundida com a interpretação com a muitas mentes a qual postula que é somente a mente do observador que se divide ao invés de todo universo.

            Um exemplo simples[editar | editar código-fonte]

            Considere-se formalmente o exemplo apresentado na introdução. Considere um par de partículas de spin 1/2, A e B, na qual nos unicamente consideraremos o spin observável (em particular sua mudança de posição). Como um sistema isolado, A partícula A é descrita por um Espaço de Hilbert de duas dimensões HA; similarmente a partícula B é descrita por um Espaço de Hilbert HB. O sistema composto é descrito pelo produto tensor:

            o qual é de dimensão 2 x 2. Se A e B não estão interagindo, o conjunto de tensores puros
            é invariante no que se refere a evolução temporal; de fato, nos somente consideramos os observáveis do spin para os quais as partículas isoladas são invariantes, o tempo não terá efeito a prior na observação. Porém, apos a interação, o estado do sistema composto é um possível estado de entrelaçamento quântico, o qual não é um tensor puro.
            O estado de entrelaçamento mais geral é uma soma
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            Para este estado corresponde um operador linear HB → HA o qual aplica estados puros para estados puros.
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            Esta aplicação (essencialmente numa normalização modular do estado) é o aplicação do estado relativo definido por Everett, como associado a um estado puro de B correspondente a estado relativo(puro) associado de A. Mais precisamente, há uma única decomposição polar de TΦ tal que
            e U é uma aplicação isométrica definido em algum subespaço de HB. Veja também decomposição de Schmidt.
            Note que a matriz de densidade do sistema composto é pura. Porém, é também possível considerar a matriz densidade reduzida descrevendo a partícula A isolada tomando o traço parcial sobre os estados da partícula B. A matriz de densidade reduzida, ao contrario da matriz original descreve um estado misto. Este exemplo em particular é baseado no paradoxo EPR.
            O exemplo anterior pode ser generalizado facilmente para sistemas arbitrários A, B sem nenhuma restrição na dimensão de espaço de Hilbert correspondente. Em geral, o estado relativo é uma aplicação linear isométrica definida no subespaço de HB para valores em HA.

            Traço Parcial e estado relativo[editar | editar código-fonte]

            A transformação de um sistema quântico resultante do processo de medição, tal como na experiência de dupla fenda discutida acima, pode ser facilmente descrita matematicamente de uma forma que seja consistente a maioria dos formalismos matemáticos. Nos iremos apresentar uma destas descrições, também chamada de estado reduzido, baseada no conceito traço parcial, o qual pode ser processo pela interação, resume para um tipo de conhecimento formalismo muitos mundos. Isto então é um pequeno passo do formalismo de muitos mundos para a interpretação de muitos mundos.
            Por definição, assumir-se-á que o sistema sempre é uma partícula tal como o elétron. A discussão do estado reduzido e muitos mundos não é diferente no caso que se nos considerarmos qualquer outro sistema físico, incluindo um "sistema observador". No que se segue, nos deveremos considerar não somente estados puros para o sistema, mas mais genericamente estados mistos.
            Estes são certamente operadores lineares no espaço Hilbertiano H descrevendo o sistema quântico. Sem duvida, como vários cenários medição apontados, o conjunto de estados puros não relacionados com a medição. Matematicamente, a matriz de densidade são misturas estatísticas de estados puros. Operacionalmente um estado misto pode ser identificado como a agrupamento estatístico resultante de um especifico procedimento preparação laboratorial.

            Estados coerentes como estados relativos[editar | editar código-fonte]

            Suponha que tenhamos um agrupamento de partículas tal que o estado S dele é puro. Isto significa que haverá um vetor unitário ψ em H tal que S é o operador dado em notação bra-ket pela fórmula seguinte:
            Agora consideremos um experimento para determinar se a partícula deste agrupamento tem uma propriedade particular: Por exemplo, a propriedade poderia ser a localização da partícula em alguma região A do espaço. O experimento pode ser preparado para se comportar seja como uma medição de um observador ou seja como um filtro. Como uma medição, determinará que a variável Q assume o valor 1 se a partícula se encontra em A e 0 no caso contrario. Como um filtro, ele deixará passar somente aquelas partículas que se encontram em A e impedindo a passagem das outras.
            Matematicamente, uma propriedade é dada pela sua projeção autoadjunta E no espaço de Hilbert H: Aplicando o filtro para um pacote de partículas, algumas delas serão rejeitadas, e outras passam. Agora será possível mostrar que uma operação de filtro ocasiona o "colapso" do estado puro como no seguinte exemplo: prepara-se um novo estado composto dado pelo operador densidade
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            onde F = 1 - E.
            Para ver isto, note-se que como um resultado da medição, o estado das partículas imediatamente após a medição é um eigevetor de Q, que é um dos dois estados puros...
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            com as respectivas probabilidades
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            A forma matemática da de apresentação deste estado combinado é pela utilização de combinação convexa de estados puros:
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            na qual o operados S1 acima.
            Comentário. O uso da palavra colapso neste contexto é de alguma maneira diferente daquela usada na explicação da interpretação de Copenhague. Nesta discussão não se irá referir a um colapso ou transformação da onda em nenhuma parte, mas particularmente da transformação de um estado puro em um estado misto.
            As considerações precedente são completamente padrões da maioria dos formalismos da mecânica quântica. Agora considere um sistema "ramificado" o qual seguindo espaço de Hilbert é
            onde H2 é uma espaço de Hilbert bi-dimensional com vetores de base  and . A ramificação no espaço pode ser entendida como um sistema composto constituído do sistema original (do qual agora é um subsistema) juntamente com um sistema não-interativo subordinado qbit simples. No sistema ramificado, considere o estado entrelaçado
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            Nos podemos expressar este estado na matriz de densidade formatado como . Multiplicando resulta em:

            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D


            traço parcial do estado misto foi obtido pela somatória dos coeficientes do operador de  and  na expressão acima. Isto resulta em estado misto em H. De fato, este estado misto é idêntico ao estado composto "pos filtragem" S1 acima.
            Sumarizando, nos temos descrição matemática do efeito do filtro para a partícula no estado puro ψ no seguinte caminho:
            • O estado original é ampliado com sistema qubit subordinado.
            • O estado puro do sistema original é substituído por um estado de entrelaçamento puro de um sistema subordinado e
            • O estado pós-filtro do sistema é o traço parcial do estado entrelaçado para o estado subordinado.

            Ramificações múltiplas[editar | editar código-fonte]

            No curso do tempo de vida do sistema esperar-se-ia que muitos eventos de filtragem ocorressem. A cada um destes eventos, uma ramificação ocorre. De forma que isto seja consistente com estrutura de ramificação como descrito na ilustração acima, nos deveremos mostrar que se um evento de filtragem ocorre em um dos caminhos do nodo raiz da árvore, então teremos que assumir que ele ocorrera em todas as ramificações. Isto mostra que a árvore é consideravelmente simétrica, que é para cada nodo n da árvore, a forma da árvore não muda pelo intercâmbio da subárvores imediatamente abaixo deste nodo n.
            De forma a mostrar esta propriedade de uniformidade de ramificação, note que alguns cálculos resultam no mesmo se o estado original de S é composto. De fato, o estado pós-filtragem será o operador de densidade:
            O estado S1 é o caminho parcial de
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            Isto significa que cada medição subsequente (ou ramificação) ao longo de um destes caminhos da raiz da árvore para um nodo folha corresponde a uma ramificação homologa ao longo de cada caminho. Isto garante a simetria da árvore de muitos mundos em relação a rotação os nodos filhos de cada nodo.

            Operadores quânticos gerais[editar | editar código-fonte]

            Nas duas seções anteriores, tem-se a representação da operação de medição em sistemas quânticos em termos de estados relativos. De fato existe uma classe mais ampla de operadores que devem ser considerados: estes são conhecidos como operadores quânticos. Considerado as operações com operadores densidade no sistema de espaço Hilbertiano H, isto se dará da seguinte forma:
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            onde I é um conjunto finito ou indexado infinitamente comutável. Os operadores Fi são chamados de operadores de Kraus.
            'Teorema. Dado
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            Então
            Além disso, o mapeamento V definido por
            é tal como
            Se γ é uma operador quântico que preserva o caminho, então V é um mapa linear isométrico
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            Onde a soma direta de Hilbert e feita sobre todas as copias de H indexadas pelos elementos de I. Podemos considerar tais mapas Φ como embutidos. Em particular:
            Corolário. Qualquer operador quântico que preserve o caminho é a composição de uma isometria embutida e um caminho parcial.
            Isto sugere que o formalismo de muitos mundos pode ser considerado para uma classe mais geral de transformações da mesma forma que foi feita para uma simples medição.

            Ramificação[editar | editar código-fonte]

            Em geral, pode-se mostrar a propriedade da ramificação uniforme da árvore como se segue: Se
            e
            onde
            e
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            então um calculo fácil mostra
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            Isto também demonstra que entre as medições propriamente ditas dos operadores quânticos (isto é, não-unitária), podemos interpolar uma arbitraria evolução unitária.




            Na mecânica quântica, a abordagem histórias consistentes pretende ser uma moderna interpretação da mecânica quântica, geralmente a interpretação de Copenhague tida como a mais convencional, provendo uma interpretação natural da cosmologia quântica. Alguns acreditam que esta interpretação deriva do trabalho apresentado por Hugh Everett sendo uma versão moderna da interpretação de muitos mundos. Outros discordam profundamente disto. A teoria se baseia no critério de consistência que então permitiria a história de um sistema possa ser descrito pelas probabilidades de cada história, que obedecem as leis da probabilidade clássica, enquanto preserva a consistência com a equação de Schrödinger.
            De acordo com esta a interpretação da mecânica quântica, o propósito da teoria da mecânica quântica é predizer a probabilidade de várias histórias alternativas. Uma história é definida como uma seqüência (produto) dos operadores de projeção em diferentes instantes no tempo:
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            O símbolo  indica que os fatores no produto são ordenados cronologicamente de acordo como os valores de : os operadores "passados" com menores valores de  aparecem no lado direito, e os do operadores "futuros" com os maiores valores de  aparecem do lado esquerdo.
            Estas projeções de operadores podem corresponder a qual conjunto de problemas que incluam todas que tratem de todas as possibilidades. Exemplificando, este poderiam ser o significado de 3 projeções: "o elétron atravessou a fenda da esquerda ", "o elétron atravessou a fenda da direita" e "o elétron não passou por nenhuma das fendas". Um dos objetivos desta teoria é mostrar que questões clássicas tais como “onde está meu carro” são consistentes. Nestes casos deve-se usar um grande número de conjuntos de projeções, cada uma especificando a localização do carro em alguma pequena região do espaço.
            Uma história é uma seqüência destas questões, ou matematicamente o produto do correspondente operador de projeção. As leis da mecânica quântica são para predizer as probabilidades das histórias individuais, dadas condições iniciais conhecidas.
            Finalmente, das histórias são requeiridas sua consistência, isto é:
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            para  diferentes. Onde  representa a matriz de densidade inicial, e o operador foi expresso na figura Heisenberg. A necessidade de consistência permite postular que a probabilidade da história  é simplesmente
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D

            a qual garante que a probabilidade do "A ou B" é igual à probabilidade de "A" mais a probabilidade de "B" menos a probabilidade de "A e B", e assim por diante. A interpretação baseada em histórias consistentes é usada em combinação com a visão do entrelaçamento quântico. O entrelaçamento quântico implica que somente determinadas escolhas das histórias são coerentes, e permitem um cálculo quantitativo da fronteira entre o domínio clássico e o quântico.
            Em algumas interpretações baseadas em histórias consistentes não muda em nada em relação ao paradigma da interpretação de Copenhague que somente as probabilidades calculadas da mecânica quântica e a função onda têm um significado físico. De forma a obter uma teoria completa, as regras formais acima devem ser suplementadas com um espaço Hilbertiano particular e leis que governem a dinâmica do sistema, pro exemplo um Hamiltoniana.
            Na opinião de outros, ainda não foi feita uma teoria completa, portanto nenhuma previsão é possível a respeito de qual conjunto de histórias consistentes irá sempre ocorrer. Estas regras das histórias consistentes, o espaço Hilbertiano e o Hamiltoniano devem ser suplementados por um conjunto selecionado de leis.
            Os propositores desta moderna interpretação, tais como Murray Gell-MannJames HartleRoland OmnesRobert B. Griffiths, e Wojciech Zurek argumentam que esta interpretação esclarece as desvantagens fundamentais da velha interpretação de Copenhague, e pode ser usado como um modelo interpretacional para a mecânica quântica.


            Pode-se exprimir o princípio da incerteza nos seguintes termos:
            O produto da incerteza associada ao valor de uma coordenada xi e a incerteza associada ao seu correspondente momento linear pi não pode ser inferior, em grandeza, à constante reduzida de Planck.[4] Em termos matemáticos, exprime-se assim:
            x

            FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

            TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

            x
             [EQUAÇÃO DE DIRAC].

             + FUNÇÃO TÉRMICA.

               +    FUNÇÃO DE RADIOATIVIDADE

              ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

              + ENTROPIA REVERSÍVEL 

            +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

             ENERGIA DE PLANCK

            X


            • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
              ΤDCG
              X
              Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
              x
              sistema de dez dimensões de Graceli + 
              DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

            • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
              x
              sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
              x
            • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
            • X
            • T l    T l     E l       Fl         dfG l   
              N l    El                 tf l
              P l    Ml                 tfefel 
              Ta l   Rl
                       Ll
                       D
            onde  é a Constante de Planck (h) dividida por 2π.
            A explicação disso não é fácil de se entender, e fala mesmo em favor da intuição, embora o raciocínio clássico e os aspectos formais da análise matemática tenham levado os cientistas a pensarem diferentemente por muito tempo. Quando se quer encontrar a posição de um elétron, por exemplo, é necessário fazê-lo interagir com algum instrumento de medida, direta ou indiretamente. Por exemplo, faz-se incidir sobre ele algum tipo de radiação. Tanto faz aqui que se considere a radiação do modo clássico - constituída por ondas eletromagnéticas - ou do modo quântico - constituída por fótons. Caso se queira determinar a posição do elétron, é necessário que a radiação tenha comprimento de onda da ordem da incerteza com que se quer determinar a posição.[5]
            Neste caso, quanto menor for o comprimento de onda (maior frequência), maior será a precisão. Contudo, maior será a energia cedida pela radiação (onda ou fóton) em virtude da relação de Planck entre energia e frequência da radiação













            x




            Comentários

            Postagens mais visitadas deste blog

            TEORIAS E FILOSOFIAS DE GRACELI 291